Force generation in small ensembles of Brownian motors.

نویسندگان

  • Martin Lindén
  • Tomi Tuohimaa
  • Ann-Beth Jonsson
  • Mats Wallin
چکیده

The motility of certain gram-negative bacteria is mediated by retraction of type IV pili surface filaments, which are essential for infectivity. The retraction is powered by a strong molecular motor protein, PilT, producing very high forces that can exceed 150 pN. The molecular details of the motor mechanism are still largely unknown, while other features have been identified, such as the ring-shaped protein structure of the PilT motor. The surprisingly high forces generated by the PilT system motivate a model investigation of the generation of large forces in molecular motors. We propose a simple model, involving a small ensemble of motor subunits interacting through the deformations on a circular backbone with finite stiffness. The model describes the motor subunits in terms of diffusing particles in an asymmetric, time-dependent binding potential (flashing ratchet potential), roughly corresponding to the ATP hydrolysis cycle. We compute force-velocity relations in a subset of the parameter space and explore how the maximum force (stall force) is determined by stiffness, binding strength, ensemble size, and degree of asymmetry. We identify two qualitatively different regimes of operation depending on the relation between ensemble size and asymmetry. In the transition between these two regimes, the stall force depends nonlinearly on the number of motor subunits. Compared to its constituents without interactions, we find higher efficiency and qualitatively different force-velocity relations. The model captures several of the qualitative features obtained in experiments on pilus retraction forces, such as roughly constant velocity at low applied forces and insensitivity in the stall force to changes in the ATP concentration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Brownian Motion of CuO-Water Nanofluid in a Porous Cavity with Internal Heat Generation by Using of LTNE Model

In this paper, the effect of the Brownian term in natural convection of CuO-Water nanofluid inside a partially filled porous cavity, with internal heat generation has been studied. It is assumed that the viscosity and thermal conductivity of nanofluid consists of a static part and a Brownian part of which is a function of temperature and the volume fraction of nanofluid. Because of internal hea...

متن کامل

Stochastic dynamics of small ensembles of non-processive molecular motors: the parallel cluster model.

Non-processive molecular motors have to work together in ensembles in order to generate appreciable levels of force or movement. In skeletal muscle, for example, hundreds of myosin II molecules cooperate in thick filaments. In non-muscle cells, by contrast, small groups with few tens of non-muscle myosin II motors contribute to essential cellular processes such as transport, shape changes, or m...

متن کامل

Stochastic force generation by small ensembles of myosin II motors.

Forces in the actin cytoskeleton are generated by small groups of nonprocessive myosin II motors for which stochastic effects are highly relevant. Using a cross-bridge model with the assumptions of fast power-stroke kinetics and equal load sharing between equivalent states, we derive a one-step master equation for the activity of a finite-sized ensemble of mechanically coupled myosin II motors....

متن کامل

Force and motion generation of myosin motors: muscle contraction.

Brownian ratchet theory refers to the phenomenon that non-equilibrium fluctuations in an isothermal medium and anisotropic system can induce mechanical force and motion. This concept of noise-induced transport has motivated an abundance of theoretical and applied research. One of the exciting applications of the ratchet theory lies in the possible explanation of the operating mode of biological...

متن کامل

Effects of Hydrolysis on Force Generation by Actin Filaments

The effects of ATP hydrolysis on actin polymerization-based force generation are calculated using a multistate two-state Brownian-ratchet model based on measured polymerization curves. For ensembles of filaments pushing against a rigid obstacle, the stall force per filament can be much less than the equilibrium ATP-actin stall force. PACS numbers: 87.15.Rn,87.17.Jj,87.16.Ac,87.15.Cc

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 74 2 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2006